Structure and Interpretation of Computer Programmers

I make it easier and faster for you to write high-quality software.

Sunday, January 28, 2018

An update on the HURD project

Last time, on Structure and Interpretation of Computer Programmers, I was building an object-oriented programming system on top of the HURD, and had realised that I needed to use its trivfs library for a sender to be able to discover an object to send messages to.

I got it working very quickly, but ended up shaving a yak due to my poor understanding of the HURD translator lifecycle which meant that I didn’t think I had got it working.

My goal was to build a translator that works like the Objective-C nil object: it accepts any message and responds by returning itself. Given that I’m building on the Mach ports abstraction, “itself” is defined as a port over which you can send messages to the same object.

If I returned an integer from the message, everything worked on both sides. However, just because a port name is an integer doesn’t mean that sending it as an int will work, just as opening a file in one process then sending the file descriptor as a number to another process wouldn’t let the receiving process access the file. I tried sending it as a mach_port_t, but got a lifecycle error: the client was told that the server had died.

On doing some reading, I discovered that the port had to be sent as a mach_port_send_t for send rights to be transferred to the client. Making that change, the message now fails with a type error.

An aside, here, on getting help with this problem. There is good documentation: the HURD source is easy to read and with helpful comments, they have good documentation including examples, the OSF documentation is very helpful, there are books from “back in the day” and videos with useful insights.

On the other hand, “help” is hard to come by. I eventually answered my own stack overflow question on the topic, having not received a reply on there, the HURD mailing list or their IRC channel. The videos described above come from FOSDEM and I’m heading out there next week, I’ll try to make some contacts in person and join their community that way.

OK, so back to the main issue, I now have a fix for my problem. Well, sort of, because now that I’m correctly sending a port with a send right I’m back to getting the lifecycle error.

My current plan is not to “fix” that, but to take it as a hint that I’m doing it wrong, and to design my system differently. Using the filesystem as a namespace to look up objects is good, but using the thing I receive as the object to message is a separate responsibility. I’m changing my approach so that the filesystem contains constructors, and they return not their own port but a port to something else that represents the instance they created.

posted by Graham at 08:28  

Sunday, January 21, 2018

Gently HURDing the side projects

I find it problematic that even at times when I’m avoiding computing outside of work, I still have ideas about things I would like to try out or improve in computing “if I had the time”. I tend to capture these somehow – usually written notes in paper or Evernote, and my personal technology radar.

Why might this be a problem? Isn’t having ideas good, and fun? Well it is, but with each comes guilt that I could be making progress on it but am not. Even when that’s my choice, when I deliberately put more effort into relationships with friends or musical projects or whatever, there’s still that nagging feeling that I’m leaving behind chances to make positive changes to computing.

My approach to addressing that started by building the radar. Now I don’t have a lot of different projects I could be working on but am not; I have a single related web of issues, and progress on any one thing counts as progress toward the whole.

The second change is to note that any progress is progress; sometimes I spend some time reading and make a sentence or two of notes on dealing with a problem. Sometimes I try a solution, find difficulties with it and write down that I discount that solution. If I’ve made some move forward from where I was before I’ve started, I can be satisfied and don’t need to burn the midnight oil to get a complete solution to a complex problem done before putting it down.

All of that goes toward describing the limited progress I’ve made on my current research topic, which is distributed message-passing. I like the idea from Erlang that objects run in separate contexts, completely decoupled except for passing messages between one another. This seems to be the best implementation of an object-oriented runtime environment, except that it is all done on the Erlang VM and in the couple of relatively esoteric languages that target it.

On the other hand, while Objective-C doesn’t make it easy to do that decoupling, it does have a very simple message-passing interface that can be implemented in any language with a C FFI. If you can wrap objc_msgSend or objc_msgLookup and expose it to your language runtime, you too can pass messages.

Why can’t we have both of these things? Why can’t we have the simple-to-integrate message interface that can work anywhere, along with the distributed and decoupled objects?

My theory is that Mach makes this possible so I’ve been investigating it using GNU Mach and the GNU HURD. Much of the documentation of Mach messaging uses name servers that register named ports for clients to find; this is how macOS, NeXTSTEP, OSF/1 and related systems work. HURD does not use a name server, it uses the filesystem: you attach a server to a file system node as a translator and clients find the ports by looking up their paths on the filesystem.

I found examples of filesystem translators in the HURD documentation, but they typically were examples that implemented the filesystem messages: seek, read, write, and so on. One could build message-sending on top of filesystem operations but it would not be pleasant:

  • marshall the message selector and arguments into some stream format
  • write() your message to the node
  • verify that you wrote as many bytes as you expect
  • read() the length of the reply
  • verify that you read as many bytes as you expect
  • read() the reply
  • verify that you read as many bytes as you expect
  • unmarshall the reply into an object of the correct type

Let’s be clear, all of this needs to be done, but it’s all already being done at the Mach message layer and hidden behind the MIG abstraction, so why should our clients and servers do it again in another abstraction built on top? I wanted to find a way to register a port that accepts non-filesystem messages using the HURD’s filesystem-as-name-server approach.

This morning I decided to look at how login was implemented on the HURD and discovered that the password server does exactly what I need. It is configured as a translator on the filesystem, and uses the trivfs library to check in with the bootstrap server and get its ports, but then it handles its own messages for checking passwords rather than the standard filesystem messages. Discovering that gives me enough new information to feel I’ve made progress, and a clear next step (pardon the pun).

posted by Graham at 11:38  

Sunday, January 14, 2018

Head of Architecture

My current job title is Head of Architecture, though the word “architecture” means different things to different people in the world of software. So what does it mean to me, what do I do when I’m playing Head of Architecture?

I follow Perry and Wolf in Foundations for the Study of Software Architecture by drawing the analogy between software architecture and built environment architecture, not network or electronics architecture. The work of a built environment architect, particularly one who follows the path laid out by Christopher Alexander, combines elements, form and aesthetics by creating a system that complements and enhances its environment. Software systems are deployed into environments (with existing people, processes, cultural norms) and developed in environments, and should make those environments better for the people who are interacting with them, while also meeting the functionality, performance, security and other goals of the system.

But that doesn’t actually explain what I do, which is more about letting other people do things that are “architecture” than about “doing architecture” for them. Programmers, ops folks, QA people, product owners, and others frequently make decisions that have wide (and hence “architectural”) impact, and I think it’s better to enable that and follow up by asking how it impacts the rest of the system, to refine the choices made, than to stop people from making those decisions for them in the name of “being the architect”.

So playing software architect for me tends to be more about creating a forum in which people can present aspects of the problems they’re trying to solve, needing to solve soon, or the solutions they’re exploring, and getting a view from multiple teams and multiple functions about those problems and solutions. Making sure that ops know what devs are doing, that product team Alpha knows how product team Aleph are solving that issue, and so on.

How about the stereotype that software architects program using Visio or Powerpoint? In my case, I program using JavaScript. I do make documentation, to make sure that decisions made in the forum are captured, that proposed or current approaches can be seen and understood. And yes, much of that documentation is diagrammatic. But ultimately I’m a programmer on a software team too, and that documentation has to reflect working, valuable software. That is, while there is value in comprehensive documentation, we value working software more.

posted by Graham at 11:02  

Saturday, January 6, 2018

MUI

In my last post I talked about investigating AROS, the modern, open source[*] implementation of the Amiga Operating System. Today I’ve spent some more time on that study, and found some things:

  • my strategy last time was to read the AROS application developer guide in order, up to the part about Intuition (the UI toolkit). This taught me about Windows and Gadgets, and the message-passing event system IDCMP. However, one of the first things I discovered today on digging more into that is that people don’t use these things directly.
  • The AmigaOS Documentation eschews gadtools (the library for working with Intuition gadgets) in favour of BOOPSI, the Basic Object-Oriented Programming System for Intuition. Its documentation uses demos that only work on the latest (proprietary) AmigaOS, and not on earlier AmigaOS or AROS.
  • The AROS documentation eventually led me to discover that even gadgets in BOOPSI are old and busted, and that the Zune[**] widget set for BOOPSI (which is based on the freeware Magic User Interface) is the new hotness.
  • This follow-your-nose-and-end-up-lost documentation issue is a big problem. I’ve learned a lot, but mostly follow “this is how this works” with “but you don’t do this”. Plenty of reference is made to the original Amiga developer documentation (which, luckily, I have, on CD in an Amiga-only format) and the MUI docs (which I don’t have but can probably get). This is not an AROS-specific issue, wherever “open source version of X” is documented, the documentation is likely to say “check out the documentation for X”. This only works where the documentation for X is available (imagine, say, if Commodore were to go bust in 1993 and stop publishing their developer docs), and relevant to the reimplementation (imagine, say, if Apple were to change programming language and GNUstep didn’t catch up).
  • That AROS is both source and (on m68k, or on UAE) binary compatible with programs that were written in the 1980s is amazing to me, and much more valuable than having latest whizzbang features and smartwatch integration from a modern platform. Leaving aside technical aesthetics which I’m likely to disagree with a lot of people on anyway, AROS and open source[*] systems like it (Haiku, ReactOS, FreeDOS, GNUstep, Lesstif) represent a critical piece of heritage infrastructure.

[*] I’m using this as a shorthand. AROS source code is published under the terms of the AROS Public License, which is not OSI-approved. The source code is available to use, study, share and improve, which many would understand to be “open”.

[**] Unrelated to the Microsoft Zune, and it’s unclear to me which came first.

posted by Graham at 23:26  

Powered by WordPress