Skip to content

Losing your identity

Developers make use of cryptographic signatures in multiple places in the software lifecycle. No iPad or iPhone application may be distributed without having been signed by the developer. Mac developers who sign their applications get to annoy their customers much less when they ship updates, and indeed the Sparkle framework allows developers to sign the download file for each update (which I heartily recommend you do). PackageMaker allows developers to sign installer packages. In each of these cases, the developer provides assurance that the application definitely came from their build process, and definitely hasn’t been changed since then (for wholly reasonable values of “definitely”, anyway).

No security measure comes for free. Adding a step like code or update signing mitigates certain risks, but introduces new ones. That’s why security planning must be an iterative process – every time you make changes, you reduce some risks and create or increase others. The risks associated with cryptographic signing are that your private key could be lost or deleted, or it could be disclosed to a third party. In the case of keys associated with digital certificates, there’s also the risk that your certificate expires while you’re still relying on it (I’ve seen that happen).

Of course you can take steps to protect the key from any of those eventualities, but you cannot reduce the risk to zero (at least not while spending a finite amount of time and effort on the problem). You should certainly have a plan in place for migrating from an expired identity to a new one. Having a contingency plan for dealing with a lost or compromised private key will make your life easier if it ever happens – you can work to the plan rather than having to both manage the emergency and figure out what you’re supposed to be doing at the same time.

iPhone/iPad signing certificate compromise

This is the easiest situation to deal with. Let’s look at the consequences for each of the problems identified:

Expired Identity
No-one can submit apps to the app store on your behalf, including you. No-one can provision betas of your apps. You cannot test your app on real hardware.
Destroyed Private Key
No-one can submit apps to the app store on your behalf, including you. No-one can provision betas of your apps. You cannot test your app on real hardware.
Disclosed Private Key
Someone else can submit apps to the store and provision betas on your behalf. (They can also test their apps on their phone using your identity, though that’s hardly a significant problem.)

In the case of an expired identity, Apple should lead you through renewal instructions using iTunes Connect. You ought to get some warning, and it’s in their interests to help you as they’ll get another $99 out of you :-). There’s not really much of a risk here, you just need to note in your calendar to sort out renewal.

The cases of a destroyed or disclosed private key are exceptional, and you need to contact Apple to get your old identity revoked and a new one issued. Speed is of the essence if there’s a chance your private key has been leaked, because if someone else submits an “update” on your behalf Apple will treat it as a release from you. It will be hard for you to repudiate the update (claim it isn’t yours) – after all, it’s signed with your identity. If you manage to deal with Apple quickly and get your identity revoked, the only remaining possibility is that an attacker could have used your identity to send out some malicious apps as betas. Because of the limited exposure beta apps have, there will only be a slight impact: though you’ll probably want to communicate the issue to the public to motivate users of “your” beta app to remove it from their phones.

By the way, notice that no application on the store has actually been signed by the developer who wrote it – the .ipa bundles are all re-signed by Apple before distribution.

Mac code signing certificate compromise

Again, let’s start with the consequences.

Expired Identity
You can’t sign new products. Existing releases continue to work, as Mac OS X ignores certificate expiration in code signing checks by default.
Destroyed Private Key
You can’t sign new products.
Disclosed Private Key
Someone else can sign applications that appear to be yours. Such applications will receive the same keychain and firewall access rights as your legitimate apps.

If you just switch identities without any notice, there will be some annoyances for users – the keychain, firewall etc. dialogues indicating that your application cannot be identified as a legitimate update will appear for the update where the identities switch. Unfortunately this situation cannot be distinguished from a Trojan horse version of your app being deployed (even more annoyingly there’s no good way to inspect an application distributor’s identity, so users can’t make the distinction themselves). It would be good to make the migration seamless, so that users don’t get bugged by the update warnings, and learn to treat them as suspicious.

When you’re planning a certificate migration, you can arrange for that to happen easily. Presumably you know how long it takes for most users to update your app (where “most users” is defined to be some large fraction such that you can accept having to give the remainder additional support). At least that long before you plan to migrate identities, release an update that changes your application’s designated requirement such that it’s satisfied by both old and new identities. This update should be signed by your existing (old) identity, so that it’s recognised as an update to the older releases of the app. Once that update’s had sufficient uptake, release another update that’s satisfied by only the new identity, and signed by that new identity.

If you’re faced with an unplanned identity migration, that might not be possible (or in the case of a leaked private key, might lead to an unacceptably large window of vulnerability). So you need to bake identity migration readiness into your release process from the start.

Assuming you use certificates provided by vendor CAs whose own identities are trusted by Mac OS X, you can provide a designated requirement that matches any certificate issued to you. The requirement would be of the form (warning: typed directly into MarsEdit):

identifier "com.securemacprogramming.MyGreatApp" and cert leaf[subject.CN]="Secure Mac Programming Code Signing" and cert leaf[subject.O]="Secure Mac Programming Plc." and anchor[subject.O]="Verisign, Inc." and anchor trusted

Now if one of your private keys is compromised, you coordinate with your CA to revoke the certificate and migrate to a different identity. The remaining risks are that the CA might issue a certificate with the same common name and organisation name to another entity: something you need to take up with the CA in their service-level agreement; or Apple might choose to trust a different CA called “Verisign, Inc.” which seems unlikely.

If you use self-signed certificates, then you need to manage this migration process yourself. You can generate a self-signed CA from which you issue signing certificates, then you can revoke individual signing certs as needed. However, you now have two problems: distributing the certificate revocation list (CRL) to customers, and protecting the private key of the top-level certificate.

Package signing certificate compromise

The situation with signed Installer packages is very similar to that with signed Mac applications, except that there’s no concept of upgrading a package and thus no migration issues. When a package is installed, its certificate is used to check its identity. You just have to make sure that your identity is valid at time of signing, and that any certificate associated with a disclosed private key is revoked.

Sparkle signing key compromise

You have to be very careful that your automatic update mechanism is robust. Any other bug in an application can be fixed by deploying an update to your customers. A bug in the update mechanism might mean that customers stop receiving updates, making it very hard for you to tell them about a fix for that problem, or ship any fixes for other bugs. Sparkle doesn’t use certificates, so keys don’t have any expiration associated with them. The risks and consequences are:

Destroyed Private Key
You can’t update your application any more.
Disclosed Private Key
Someone else can release an “update” to your app; provided they can get the Sparkle instance on the customer’s computer to download it.

In the case of a disclosed private key, the conditions that need to be met to actually distribute a poisoned update are specific and hard to achieve. Either the webserver hosting your appcast or the DNS for that server must be compromised, so that the attacker can get the customer’s app to think there’s an update available that the attacker controls. All of that means that you can probably get away with a staggered key update without any (or many, depending on who’s attacking you) customers getting affected:

  • Release a new update signed by the original key. The update contains the new key pair’s public key.
  • Some time later, release another update signed by the new key.

The situation if you actually lose your private key is worse: you can’t update at all any more. You can’t generate a new key pair and start using that, because your updates won’t be accepted by the apps already out in the field. You can’t bake a “just in case” mechanism in, because Sparkle only expects a single key pair. You’ll have to find a way to contact all of your customers directly, explain the situation and get them to manually update to a new version of your app. That’s one reason I’d like to see auto-update libraries use Mac OS X code signing as their integrity-check mechanisms: so that they are as flexible as the platform on which they run.